GABA(B) receptors are the first target of released GABA at lamina I inhibitory synapses in the adult rat spinal cord.
نویسندگان
چکیده
We have previously provided functional evidence that glycine and GABA are contained in the same synaptic vesicles and coreleased at the same synapses in lamina I of the rat spinal dorsal horn. However, whereas both glycine receptors (GlyRs) and GABA(A) receptors (GABA(A)Rs) are expressed on the postsynaptic target, under certain conditions inhibitory events appeared to be mediated by GlyRs only. We therefore wanted to test whether GABA(B) receptors could be activated in conditions where GABA released was insufficient to activate GABA(A)Rs. Focal stimulation in the vicinity of visually identified lamina I neurons elicited monosynaptic IPSCs in the presence of ionotropic glutamate receptor antagonists. Pairs of stimuli were given at different interstimulus intervals (ISI), ranging from 25 ms to 1 s to study the depression of the second of evoked IPSCs (paired pulse depression; PPD). Maximal PPD of IPSCs was 60 +/- 14% (SE) (of the conditioning pulse amplitude), at ISI between 150 and 200 ms. PPD was observed with IPSCs evoked at stimulus intensities where they had no GABA(A)R component. PPD of small evoked IPSCs was not affected by the GABA(A)R antagonist bicuculline but significantly attenuated by 10-30 microM CGP52432, a specific GABA(B) receptor antagonist. These data indicate that, under conditions where GABA released is insufficient to affect postsynaptic GABA(A)Rs at lamina I inhibitory synapses, significant activation of presynaptic GABA(B) receptors can occur.
منابع مشابه
GABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملJunctional versus extrajunctional glycine and GABA(A) receptor-mediated IPSCs in identified lamina I neurons of the adult rat spinal cord.
Colocalization of GABA and glycine in synaptic terminals of the superficial dorsal horn raises the question of their relative contribution to inhibition of different classes of neurons in this area. To address this issue, miniature IPSCs (mIPSCs) mediated via GABA(A) receptors (GABA(A)Rs) and glycine receptors (GlyRs) were recorded from identified laminae I-II neurons in adult rat spinal cord s...
متن کاملGABA-mediated membrane oscillations as coincidence detectors for enhancing synaptic efficacy in the developing hippocampus
Spontaneously occurring neuronal oscillations constitute a hallmark of developmental networks. They have been observed in the retina, neocortex, hippocampus, thalamus and spinal cord. In the immature hippocampus the so-called ‘giant depolarizing potentials’ (GDPs) are network-driven membrane oscillations characterized by recurrent membrane depolarization with superimposed fast action potentials...
متن کاملRegion-specific developmental specialization of GABA-glycine cosynapses in laminas I-II of the rat spinal dorsal horn.
The spinal dorsal horn is the first level of the CNS in which nociceptive input from sensory afferents is integrated and transmitted. Although inhibitory control in this region has a crucial impact on pain transmission, the respective contribution of GABA and glycine to this inhibition remains elusive. We have previously documented co-release of GABA and glycine at the same inhibitory synapse i...
متن کاملHeterosynaptic long-term potentiation at GABAergic synapses of spinal lamina I neurons.
Neurons in spinal dorsal horn lamina I play a pivotal role for nociception that critically depends on a proper balance between excitatory and inhibitory inputs. Any modification in synaptic strength may challenge this delicate balance. Long-term potentiation (LTP) at glutamatergic synapses between nociceptive C-fibers and lamina I neurons is an intensively studied cellular model of pain amplifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 84 2 شماره
صفحات -
تاریخ انتشار 2000